The solar greenhouse that’s right for you

(Text & illustrations for this web page came from the August, 1978 issue of Organic Farming & Gardening)

Here is a new gardening tool that produces fresh food when the snow flies.

by Jack Ruttle

ALMOST ANY STRUCTURE that is built to look like a solar greenhouse will work. That is to say, the solar greenhouse concept is so right that you can ignore (or not know) the fine points of solar design and still build a house with much less need for supplemental heat than a traditional greenhouse. But once you understand a few basic solar-greenhouse design ideas, you can easily put together a greenhouse that truly lives up to the label solar, and provides remarkable efficiency.

greenhouse 195x300 The solar greenhouse thats right for you

Dave MacKinnon’s solar greenhouse greatly expands
his crops of homegrown food. He picks salads every
day through winter. Frost nips his outside garden early,
so greenhouse protection has meant the first
heavy-producing tomato plants he’s ever grown

Dave MacKinnon, Ph.D., ORGANIC GARDENING greenhouse designer, has put it all together after three years of experimenting and has created a design formula that gardeners in any climate can follow. His newest solar greenhouse, which he has built and tested in Flagstaff, Arizona, epitomizes a good solar shape. It has produced food through two winters without requiring any outside heat source. Almost all the floor space is usable for growing beds because the energy storage is on the walls. And it uses a minimum of materials because the design, insulation and heat storage are in balance and arranged to complement each other.

The best measure of a solar green house is the plant-growing environment it creates. When the building is skillfully made, you will get midspring soil and air temperatures in the depths of winter on sun power alone.

Our experiences suggest that solar greenhouses can maintain that kind of environment in most parts of the country. ORGANIC GARDENING researchers have built two different greenhouses that have worked well despite unusual winter weather. The Flagstaff greenhouse performed well with much less sun than is considered normal, and the one at our Maxa-tawny, Pennsylvania, research center worked through the coldest winters in recorded meteorological history.

In December and January we harvested enough salad greens every day for three or four people. Cold-hardy plants, all very rich in vitamins A and C, produce best. Escarole, lettuce, parsley, corn salad, chervil, chives and other salad herbs are dependable. So are kale, chard and chicory, which grow so thin and tender in the weak winter sun that they are best in salads too. In spring and fall the harvests are bigger. Succession plantings make heat-loving plants like tomatoes and cucumbers possible far beyond their normal seasons.

SOLAR GREENHOUSE BASICS

greenhouse2 300x249 The solar greenhouse thats right for youAt the least, a solar greenhouse should have three features. One of the long walls should face due south rather than east or west. The south wall should have two layers of glazing. All the surfaces that don’t face south are insulated. But there’s a little more to it than that if the greenhouse is to live up to its solar potential. The new Flagstaff greenhouse is a perfect model.

Dave MacKinnon says the greenhouse should be about twice as long (east to west) as it is wide. Accordingly, his Flagstaff greenhouse is 20 feet by 12 feet. The two-to-one relationship offsets the effect of the shade that the opaque east and west end walls create. The building thus captures more solar energy for each square foot of growing space. If the building is made much deeper than two to one — that is, closer to a square floor plan — the heat-storage material in back is shaded too much. These proportions are recommended for greenhouses everywhere.

MacKinnon has learned another rule of thumb for sizing the energy-collecting south face properly, and has built it into the Flagstaff greenhouse. The peak should be made about as high as the building is wide (north to south). Heat-storing materials in the back of the greenhouse will then get the direct exposure to the sun they must have if the storage is to work efficiently.

The slope of the north roof is an important feature of MacKinnon’s greenhouse, though the precise angle of slope is not critical. Sunlight which enters the greenhouse and strikes the aluminum-foil-covered roof (white paint works well too) is aimed back down to the growing beds. From the outside, the interior of the greenhouse looks almost black because very little light is bouncing back out to the viewer. If designed well, solar greenhouses with reflective walls can actually deliver up to a third more light to the plants in winter. In the traditional all-glass design, much of the light passes right on out the clear north roof and wall. Angles between 60 and 75 degrees for the north roof will work well in the United States and southern Canada.

The slope of the sun-collecting south face might appear to be trickier to decide upon. The angle does affect how well the translucent face collects sunlight, but for greenhouses it’s not as critical as when setting up a compact solar-heating unit. Actually, a wide range of angles will work equally well at any given latitude. The simplest thing to do is to add 20 degrees to your latitude. A south face with that angle will give optimum performance in January. But if that particular angle proves hard to work with, go to a slightly shallower one, and you will be favoring solar collection in spring and fall. If you use 50 degrees rather than 60, which, for example, you may figure is your ideal, you still have sacrificed very little midwinter light.

Given this leeway, other factors like convenient construction can help determine the south slope. The south face of the Flagstaff greenhouse was made steep all the way to the ground to shed snow quickly. That feature lets sunlight in sooner after storms. The Maxatawny greenhouse has a vertical glazed knee wall from which a shallow, clear roof slopes up to the peak. There is much less snow to worry about there, and this shape makes working in the front of the growing beds easier.

When it comes to putting in insulation and heat storage, however, solar greenhouses can get needlessly expensive. The key is to have sensible amounts of both. Great thicknesses of insulation can’t do away with the need for heat storage, and are wasteful. And obviously, adequate heat-storage material without a certain amount of insulation in the walls is equally wasteful. Even if you build a greenhouse that is not completely solar-reliant, using a balance of these component parts guarantees an economical building that will work well. (The information on the map indicates the proper proportion of materials, as well as recommending minimum amounts for a fully solar structure.)

HOW HEAT STORAGE AND INSULATION TEAM UP

greenhouse3 300x247 The solar greenhouse thats right for you

“Five-gallon honey cans make efficient
heat-storage containers” says MacKinnon.
They pack the maximum amount of
water into a given space.

The connection between heat-storing materials and insulation works like this. Without heat storage, solar greenhouses are something like a thermos bottle — all the energy is in the sun-warmed air. Drafts will quickly drain off the heat, because even the most tightly made building will have a fair amount of tiny cracks. Energy held within storing materials is not lost along with escaping air. The energy is released slowly as the greenhouse cools, and the building stays warm much longer.

A no-less-important effect is that heat-storage materials keep the greenhouse from overheating during the day. We quickly learned that without storage the inside temperature can soar into the 80′s or 90′s on cold, bright days. That is quite hard on a winter greenhouse crop.

With storage absorbing some of the incoming energy, the result is a milder daytime environment.

The amount of heat storage for full solar heating seems enormous at first, but is manageable in practice. Both of MacKinnon’s greenhouses use about 1,000 gallons of water stacked vertically on the rear walls. That amounts to four gallons of water for each square foot of floor space. The best method we’ve found is to use rectangular five-gallon honey cans with a rust inhibitor added to the water.

Why do we rely so heavily on water? It is admittedly hard to work with because it tends to corrode containers and to leak. But water is about the best heat-storing material known and is cheap. The best alternative is rock (in any form from sand through concrete), but water holds about five times more heat. So water reservoirs on walls make compact heat storage that gets a good share of direct incoming sunlight.

MacKinnon favors smaller containers over 55-gallon drums for two reasons. Drums leave empty about a third of the space they occupy, because they are big and round. They also permit warmed water to gather into a few large areas, which causes both greater heat losses and poorer collection in those areas. Smaller containers keep the energy more evenly distributed. On the other hand, the large barrels are certainly worth using if they can be had cheaply. We’ve also used translucent plastic cider jugs filled with water dyed black, and have heard reports of success with beverage cans sealed with tape and stacked right-side-up.

The amount of insulation that MacKinnon judges to be practical in various regions is roughly the same as local, energy-efficient recommendations for homes. If that seems lavish for a greenhouse, remember that homes get a lot of extra heat; the greenhouse is designed to get along with none. To me, the need for plenty of insulation is a reminder that people aren’t much different from plants in their requirement for warmth, among other things. To use less insulation, however, is to need more heat storage, which demands more space and money.

Two other simple things are crucial to the success of our greenhouses. The earth below them is insulated to a little below frostline with plastic foam. And at night an insulating curtain is drawn over the clear south wall to reduce the high heat losses there.

It pays to insulate the earth below the greenhouse because earth is a relatively poor insulator, contrary to a lot of lore.

greenhouse41 300x192 The solar greenhouse thats right for youA few inches of most common insulators match the R-value of ten to 15 feet of earth. But earth is a good heat-storing material, lying somewhere between rock and water. So insulating around the perimeter builds heat storage into the structure while stopping steady heat losses to the ground outside. We checked the advantage of doing this at the Maxa-tawny site. Six inches below the surface, the insulated soil was in the 40′s in January and in the 50′s in February, while the ground outside was frozen solid several feet deep.

The day comes when shuttering the glass or plastic face becomes practical despite the inconvenience of twice daily attention. Past a certain point, there’s no easier way to gain a few degrees inside. The south-facing glass loses a tremendous amount of heat compared to the other three-fourths of the building’s surface that is insulated. To add enough storage material to make up for what shutters can save would take too much room away from the plants.

We’ve found that a good nighttime heat barrier for the window doesn’t have to be a great insulator, but it must be durable and easy to maneuver, since it will get heavy use. More important, the material should be reflective on the inside and fitted tightly at the edges to stop air flow. A reflective material (aluminum paint or foil) will block all escaping radiant energy. Combined with an airtight seal, that seems to do plenty for me greenhouse. Beyond that, any insulating value you can build into the curtain is so much the better.

It pays to insulate the earth below the greenhouse because earth is a relatively poor insulator, contrary to a lot of lore.

 

greenhouse5 300x238 The solar greenhouse thats right for you

The muscle power it takes to raise
and lower the heat-trapping curtain
is the only non-solar energy a well-
designed greenhouse needs.

A few inches of most common insulators match the R-value of ten to 15 feet of earth. But earth is a good heat-storing material, lying somewhere between rock and water. So insulating around the perimeter builds heat storage into the structure while stopping steady heat losses to the ground outside. We checked the advantage of doing this at the Maxa-tawny site. Six inches below the surface, the insulated soil was in the 40′s in January and in the 50′s in February, while the ground outside was frozen solid several feet deep.

The day comes when shuttering the glass or plastic face becomes practical despite the inconvenience of twice daily attention. Past a certain point, there’s no easier way to gain a few degrees inside. The south-facing glass loses a tremendous amount of heat compared to the other three-fourths of the building’s surface that is insulated. To add enough storage material to make up for what shutters can save would take too much room away from the plants.

We’ve found that a good nighttime heat barrier for the window doesn’t have to be a great insulator, but it must be durable and easy to maneuver, since it will get heavy use. More important, the material should be reflective on the inside and fitted tightly at the edges to stop air flow. A reflective material (aluminum paint or foil) will block all escaping radiant energy. Combined with an airtight seal, that seems to do plenty for me greenhouse. Beyond that, any insulating value you can build into the curtain is so much the better.

Without a doubt, a thin, aluminized fabric which is operated by ropes or a pulley is the cheapest system to make and work with. The best one Dave MacKinnon tried was made of aluminum foil glued to one side of parachute fabric. That curtain lasted two years before needing repairs.

The third winter at Maxatawny we used a shutter system that could hardly be bettered for stopping heat. Panels of one-inch urethane foam, aluminized on one side, were held in place with wooden battens. We kept them in an air-lock entrance room that doubled for storing tools and gardening supplies. The only drawback to the foam is that it is expensive. Any exposed foam surfaces should be painted to waterproof the material against condensation that accumulates on the glazing.

Those are the basics of a solar greenhouse: the sun-catching design, strategically placed insulation, and heat storage. Together they make a cool-weather garden possible even in Northern states. In ours the air inside has averaged 42 degrees higher than outside and between 45 and 55 degrees F. in the soil throughout the winter. Many vegetables will thrive in that temperature range.

VEGETABLE GROWING IN THE SOLAR GREENHOUSE

There’s a lot to be learned about cool greenhouse vegetable culture. The most important trick we’ve discovered is using the right growing container. Traditional greenhouse wisdom recommends pots on waist-high benches — easy to reach and easy to isolate diseases and pests. But continuous temperature recordings in the soil pots showed that the temperature in the root zone changed right along with the air temperature, because the exposed surface of a pot is so large. There were large swings every day, extremes that plant roots aren’t used to. So we switched to two large beds 18 inches deep that cover the greenhouse floor. They held the root zone to a 10-degree daily change which is natural, and also made a greater heat-storing mass.

Beds have many other advantages. Roots have more room to forage for water and nutrients. The environment becomes a better one for natural predators like spiders. Because the soil in beds holds a large amount of organic matter, they also become an important source of carbon dioxide. Plants in a sunny, airtight greenhouse can use up all the available carbon dioxide in a few hours.

Nothing like these greenhouses is available for sale yet, but several years from now you will start to see them. The big greenhouse manufacturers are redesigning their products exactly along these lines. They will probably be expensive. But a home-built, sun-heated greenhouse like ours

can be constructed now for less than the finest energy-wasting glass house, and will be tailored to match your local climate.

In the far North, where solar greenhouses will be the most expensive to build, they will yield the greatest expansion of the gardening season. Even in southerly Flagstaff, Dave MacKin-non reports that his solar greenhouse has made possible his first really good tomato crops, so dry and short is the growing season there.

Properly made and maintained, a solar greenhouse should outlast its builder. The materials are all durable or renewable.

House-attached greenhouses are even cheaper to build. As you plan your solar greenhouse, you should think first of this kind for many reasons. Attached greenhouses have about a third less surface area for the same floor space as a freestanding one. Thus construction costs are lower, and less heat is lost at night. Attached solar greenhouses are the most efficient hot-air solar collectors known. High and low vents that open into the home through the common wall exchange solar-heated greenhouse air for cool air at floor level from the house. At night, the house can return some of the heat to the greenhouse. All the design principles for solar greenhouses apply to the attached greenhouse, except they may need less heat storage. The only requirement is a suitable spot facing south that is unshaded in winter.

Looking only at the money, it’s obvious that a durable solar greenhouse, attached or freestanding, will repay its cost. Compared to conventional all-glass models the fuel savings alone will pay for its construction in three to four years in the North. And they make you independent of an unhealthy agriculture and the transportation system it depends upon for fresh vegetables to tide you through winter. That’s why we recommend so strongly that you build one if you can.

Comments

  1. HomeINsteader says:

    As I’ve mentioned on the blog before, we built our greenhouse using the one gallon stackable round water bottles from the spring water we buy as our source of potable water. Yes, we have city water (on our “city” property – not on the BOL) – we don’t like even having to shower with it, but, we do. We have consumed bottled spring water for some 35 years, in this case, “Ozarka” brand, which comes in a round that has a deep well, excellent for stacking. I’ve also seen that Nestle has come out with that same bottle but it’s nothing but filtered city water (they’re both owned by Nestle these days, FYI).

    We stacked these bottles and strapped them in place with thick plastic straps picked up at Lowe’s for about 80 cents each, about every 3rd row (no need to strap every row). We first filled them with tap water and a tiny bit of Leslie’s Pool shock (bleach will do – but it doesn’t take much); we now have lots of stored water that also serves as a solar-heated wall system for the green house. Seems to work well enough.

    Also, there is a cool post at Seasoned Citizen Prepper today; I’m thinkin’ this would be great for a small greenhouse aquaponics system:

    http://seasonedcitizenprepper.com/low-rent-indoor-hydroponics/?utm_source=feedburner&utm_medium=email&utm_campaign=Feed%3A+SeasonedCitizenPrepper+%28Seasoned+Citizen+Prepper%29

  2. Thanks for the article. This is one of the things we will be adding to our place, once we move out of town.

  3. Tactical G-Ma says:

    Great idea for northern living. Thanks for sharing.

  4. Perfect timing. I am in the process of constructing some hoop tunnels on my raised garden beds. I have also been thinking of building a greenhouse. This gives me something else to think about on the greenhouse aspect of things.

  5. According to the article they used items that don’t appear to be available anymore for the thermal wall. Aside from the “one gallon stackable round water bottles from the spring water” does anyone else have any ideas?

    I don’t purchase this service so I will need some other options.

    • SW, the one gallon round Ozarka bottles are available at grocery stores–our Kroger’s puts them on sale at 10 for $5 several times a year. Reg price is $1 per bottle.

    • HomeINsteader says:

      Yep. I buy them at the local Kroger grocery when they do on sale – for 99 cents each, then at the same time they do a “save 50% off” when you buy in lots of 10, so, I actually get them at .49 per gallon – but they never have enough of these, so, you gotta be fast! I will buy 2 cartloads at a time, about 60 gallons, every 6-8 weeks, when they have this offer available. Other than that, you can get them at Sam’s for 99 cents a gallon any time (at least in MS, you can).

  6. The design written in the article is a good one. I know a local grower who uses it, but on a bigger scale. His solar greenhouse is 100 ft long. he grows a trememdous amount to greens in it all winter to sell to local markets. He covers it with insulated conrete blankets on pully system at night.

    We took great pride in building a stick built traditional style 24×80 greenhouse from mostly recycled materials. At times at get great joy from it. Mostly not. I call it the Money Pit. In the summer it is too hot, even with ends opened. I must used two large evaporative coolers and fans to keep it below 120 degrees. Peppers don’t want to live in it that hot. I certainly don’t.

    In the winter, when the suns goes down, it is just as cold as it is outside. I must a use a woodstove and propane and kerosene heaters for back up. Nothing worse than losing 3000 seedlings right before planting time, because the stove cooled down too soon. I have been known to sleep with the plants to keep the fire stoked. Hearing that big Modene commerical heater come on a 3 am, makes me cringe. Might as well through cash in the fire to heat the plants.
    We live in zone 4-5 and are at a higher elevation than Flagstaff. Even if you live in a milder climate, these concepts still apply anywhere. Don’t plan on saving your seedling from a killing first in anything that has not been properly covered inside and out. Even in my greenhouse, tender perennials like basil and peppers must be covered twice.
    Yes, we just thermal mass like black water barrels. Black weed barrier for flooring. Double insulated heavy greenhouse plastic.
    If had to do it all over again, I would add a design like the one in the article combined with a sunken solarium type greenhouse to my home. To share heat, humidity, thermal mass and convenience. It is the only way to be truly free of the need of power and or excessive heat. Water is not an issue.
    No fun caring buckets of tepid or warm water through knee deep snow to the greenhouse in the winter. I have a frost free faucet near the greenhouse, but the water is too cold. Even chard doesn’t like that shock in its roots.
    Even if you buy a hoop house from a company like Farm Tec, make sure it is double insulated. This type of greenhouse would be my second choice. Make sure that you cover your crops inside when frost threatens. Floating row cover works great. Sheeting. NOT Plastic unless it is not touching the plants.
    Also, the sides rolling up is more effective than the ends being open for cooling.
    Be aware that a greenhouse will create a new micro environment. You could have pest, blight, fungus, damping off, all sorts of thing that you normally would not have in an outside garden. Don’t let that stop you, just be aware that it is more likely.
    Most of all. For heavens sake, NEVER bring a plant from another greenhouse into yours until you have established through quarantine that it is disease and pest free. A bad case of aphids will make you want to burn the place down. Be aware that tobacco and tomatoes don’t mix! Don’t let anyone smoke in your greenhouse. Tobacco mosiac virus is BAD for tomatoes.

  7. Interesting article and comments here.

    MY neighbor built two big 100 ft greenhouses up here in the frozen north but he has to heat his with an outdoor wood furnace.He creates and extends the growing season, March-November but it takes up too much cost in wood to heat them–about 10 cords of hardwood.

    I made a small makeshift greenhouse over my starter garden and it worked well planting earlier than what is recommended in June. Winter this far north. Zone 2-3 has little sun and sub zero temps most of the time. No one keeps their greenhouses growing all winter here.

  8. A few years ago, I came across “Handy Farm Devices” on the web. It’s a book from 1912 (available many places). One suggestion was for a hot frame. They provided heat over the cold months by composting manure/straw underneath a foot or so of soil, all enclosed in a frame similar to these greenhouses. An interesting way to provide heat and you have compost ready made come spring. An alternative was to install clay flues beneath the frame and on cold says have a fire on one side with the flue discharging on the other. Possibly good additions to these greenhouse designs.

    Also, you could either dig the north wall into a slope or berm the insulated walls to reduce heat loss due to the cold winds in winter.

  9. Though I am very appreciative of any new information I can get from people who I read, most of the insulating is only necessary in northern climates like the author lives in. And as far as the earth not being a good insulator, If you can afford to dig down about eight feet in a track zig zag around the whole area which will be your floor. Lay in four inch duct preferably the same as you use for you rain water collecting. It will take about 150 feet of duct to really keep the temp at optimum growing. But if you can’t afford that much duct and don’t mind digging deeper in order to use less, you can. The earth will keep the temp at a minimum temp of 55 Fahrenheit and a small blower fan powered by batteries and a solar panel can provide warmed air sufficiently for the survival of plants.